Показаны сообщения с ярлыком substitution. Показать все сообщения
Показаны сообщения с ярлыком substitution. Показать все сообщения

воскресенье, 25 декабря 2022 г.

Consumption II: Consumption duality. Substitution and income effects.

Consumption duality 

There are two ways to solve a consumer’s choice problem. That is, we can either fix a budget and obtain the maximum utility from it (primal demand) or set a level of utility we want to achieve and minimise cost (dual demand).

The way to solve either problem is very similar: we look for the Lagrangian function and obtain first order conditions, then solve the system.

When dealing with primal demand, that is, utility maximisation, our Langrangian is as follows:

formula-Consumption-duality-Utility-maximisation

Subj. to:

formula-Consumption-duality-Budget-constraint

So that:
formula-Consumption-duality-Lagrangian-primal-demand

That is, our Lagrangian is our utility function, which depends on x1, x2 minus the restriction- our budget. The first order conditions (which we obtain from the first derivatives) give us Marshallian demand curves.

When dealing with dual demand, that is, cost minimisation, our Lagrangian system is as follows:

formula-Consumption-duality-Cost-minimisation

Subj. to:

formula-Consumption-duality-Utility-condition

So that:
formula-Consumption-duality-Lagrangian-dual-demandThat is, our Lagrangian is our cost function, which depends on x1, x2 minus our utility function, which must equal a constant. The first order conditions give us Hicksian demand curves.

Video – Consumption duality:


We all know that, in theory, when the price of something goes up we buy less of it. But there are two factors at play here: one is the fact that we will look for something similar but less expensive and the second is the fact that if what goes up takes up a large proportion of our budget (a mortgage), we simply have less to spend. In the next entry, we cover the dynamics of this in more detail.

Substitution and income effects

This Learning Path is a bit more of a mixed bag than the previous one, finishing off our consumer choice problem, looking at the some useful implications of this in demand theory before moving on to other types of demand theories.

Generally, if the price of something goes down, we buy more of it. This is down to two effects:

  • Income effect: because it’s less expensive, we have more purchasing power because it is a smaller drain on our personal finances.
  • Substitution effect: because it offers more utility per unit of money, other alternatives become less attractive.

What Eugen Slutsky managed to do was find an equation that decomposes this effect based on Hicksian and Marshallian demand curves.

Graphically:


Mathematically, it is based on the derivatives of Marshallian and Hickisan demands:


The left hand side of the equation is the total effect- that is, the derivative of x (quantity) respect p (price). It shows us how much the total quantity of x that we consume varies when we change price. The next part is the substitution effect- how much the variation is due to us finding similar options. It is obtained from the derivative of the Hicksian demand with regards price. The right hand side is the income effect, how much changes in our purchasing power affect the amount we consume of a certain good. It is the derivative of the Marshallian demand with regards wealth (multiplied by the quantity).

Whether the SE and the IE are positive or negative when prices rise depends on the type of good:

TE

SE

IE

+

Substitute goods

Substitute goods

Inferior goods

Complementary goods

Complementary goods

Normal goods

It is not always possible to tell what the total effect will be- if we are talking about inferior complementary goods, for example, the SE and the IE pull in opposite directions. The TE will depend on which effect is stronger.

Video – Income and substitution effects:


Marshall and Hicks treated substitution and rent effects differently, judging whether or not they should both be included in demand functions. Let’s see why and how this affects what we would, in theory, consume.

https://cutt.ly/L00ZAs6

понедельник, 24 октября 2022 г.

Consumption I: Marginal rate of substitution

 The marginal rate of substitution (MRS) can be defined as how many units of good x have to be given up in order to gain an extra unit of good y, while keeping the same level of utility. Therefore, it involves the trade-offs of goods, in order to change the allocation of bundles of goods while maintaining the same level of satisfaction. It can be determined using the following formula:


The MRS is linked with indifference curves, since the slope of this curve is the MRS. In the adjacent figure you can see three of the most common kinds of indifference curves.

The first one, which is generally used for defining the utility of consumption for a given economic agent, has a MRS that changes along the curve, and will tend to zero when diminishing the quantity of X2 and to infinite when diminishing the quantity of X1.


In the second graph, both goods are perfect substitutes, since the lines are parallel and the MRS = 1, that is the slope has an angle of 45º with each axis. When considering different substitutes goods, the slope will be different and the MRS can be defined as a fraction, such as 1/2 ,1/3, and so on. For perfect substitutes, the MRS will remain constant.

Lastly, the third graph represents complementary goods. In this case the horizontal fragment of each indifference curve has a MRS = 0 and the vertical fractions a MRS = ∞.

Not to be confused with: Marginal rate of technical substitution and Marginal rate of transformation.

Video – Marginal rate of substitution:


https://bit.ly/3sodetZ