четверг, 5 ноября 2020 г.

The Big Mac index

 

Global price of a Big Mac as of July 2020, by country

Global exchange rates, to go

How it works

Purchasing-power parity implies that exchange rates are determined by the value of goods that currencies can buy

Differences in local prices – in our case, for Big Macs – can suggest what the exchange rate should be

Using burgernomics, we can estimate how much one currency is under- or over-valued relative to another

GDP-adjusted
Varying labour costs and barriers to migration and trade may undermine purchasing-power parity
To control for this, our adjusted index predicts what Big Mac prices should be given a country’s GDP per person
The difference between the predicted and the market price is an alternative measure of currency valuation

Source data

Our source data are from several places. Big Mac prices are from McDonald’s directly and from reporting around the world; exchange rates are from Thomson Reuters; GDP and population data used to calculate the euro area averages are from Eurostat and GDP per person data are from the IMF World Economic Outlook reports.

The GDP-adjusted index addresses the criticism that you would expect average burger prices to be cheaper in poor countries than in rich ones because labour costs are lower. PPP signals where exchange rates should be heading in the long run, as a country like China gets richer, but it says little about today's equilibrium rate. The relationship between prices and GDP per person may be a better guide to the current fair value of a currency.

https://econ.st/38lZHdT




Where machines could replace humans—and where they can’t (yet)

 


By Michael Chui, James Manyika, and Mehdi Miremadi



The technical potential for automation differs dramatically across sectors and activities.
As automation technologies such as machine learning and robotics play an increasingly great role in everyday life, their potential effect on the workplace has, unsurprisingly, become a major focus of research and public concern. The discussion tends toward a Manichean guessing game: which jobs will or won’t be replaced by machines?


In fact, as our research has begun to show, the story is more nuanced. While automation will eliminate very few occupations entirely in the next decade, it will affect portions of almost all jobs to a greater or lesser degree, depending on the type of work they entail. Automation, now going beyond routine manufacturing activities, has the potential, as least with regard to its technical feasibility, to transform sectors such as healthcare and finance, which involve a substantial share of knowledge work.

From science fiction to business fact
McKinsey’s Michael Chui explains how automation is transforming work.
These conclusions rest on our detailed analysis of 2,000-plus work activities for more than 800 occupations. Using data from the US Bureau of Labor Statistics and O*Net, we’ve quantified both the amount of time spent on these activities across the economy of the United States and the technical feasibility of automating each of them. The full results, forthcoming in early 2017, will include several other countries,1but we released some initial findings late last year and are following up now with additional interim results.
Last year, we showed that currently demonstrated technologies could automate 45 percent of the activities people are paid to perform and that about 60 percent of all occupations could see 30 percent or more of their constituent activities automated, again with technologies available today. In this article, we examine the technical feasibility, using currently demonstrated technologies, of automating three groups of occupational activities: those that are highly susceptible, less susceptible, and least susceptible to automation. Within each category, we discuss the sectors and occupations where robots and other machines are most—and least—likely to serve as substitutes in activities humans currently perform. Toward the end of this article, we discuss how evolving technologies, such as natural-language generation, could change the outlook, as well as some implications for senior executives who lead increasingly automated enterprises.


Understanding automation potential

In discussing automation, we refer to the potential that a given activity could be automated by adopting currently demonstrated technologies, that is to say, whether or not the automation of that activity is technically feasible.2Each whole occupation is made up of multiple types of activities, each with varying degrees of technical feasibility. Exhibit 1 lists seven top-level groupings of activities we have identified. Occupations in retailing, for example, involve activities such as collecting or processing data, interacting with customers, and setting up merchandise displays (which we classify as physical movement in a predictable environment). Since all of these constituent activities have a different automation potential, we arrive at an overall estimate for the sector by examining the time workers spend on each of them during the workweek.
Exhibit 1

Analyzing work activities rather than occupations is the most accurate way to examine technical feasibility of automation.

In practice, automation will depend on more than just technical feasibility. Five factors are involved: technical feasibility; cost of automate; the relative scarcity, skills, and cost of workers who might otherwise do the activity; benefits (eg, superior performance) of automation beyond labor-cost substitution; and regulatory and social-acceptance considerations.

1)      Applying expertise to decision making, planning and creative tasks.

2)      Unpredictable physical work (physical activities and the operation of machinery) is performed in unpredictable environments, while in predictable physical work, the environments are predictable. 

Technical feasibility is a necessary precondition for automation, but not a complete predictor that an activity will be automated. A second factor to consider is the cost of developing and deploying both the hardware and the software for automation. The cost of labor and related supply-and-demand dynamics represent a third factor: if workers are in abundant supply and significantly less expensive than automation, this could be a decisive argument against it. A fourth factor to consider is the benefits beyond labor substitution, including higher levels of output, better quality, and fewer errors. These are often larger than those of reducing labor costs. Regulatory and social-acceptance issues, such as the degree to which machines are acceptable in any particular setting, must also be weighed. A robot may, in theory, be able to replace some of the functions of a nurse, for example. But for now, the prospect that this might actually happen in a highly visible way could prove unpalatable for many patients, who expect human contact. The potential for automation to take hold in a sector or occupation reflects a subtle interplay between these factors and the trade-offs among them.
Even when machines do take over some human activities in an occupation, this does not necessarily spell the end of the jobs in that line of work. On the contrary, their number at times increases in occupations that have been partly automated, because overall demand for their remaining activities has continued to grow. For example, the large-scale deployment of bar-code scanners and associated point-of-sale systems in the United States in the 1980s reduced labor costs per store by an estimated 4.5 percent and the cost of the groceries consumers bought by 1.4 percent.3It also enabled a number of innovations, including increased promotions. But cashiers were still needed; in fact, their employment grew at an average rate of more than 2 percent between 1980 and 2013.

The most automatable activities

Almost one-fifth of the time spent in US workplaces involves performing physical activities or operating machinery in a predictable environment: workers carry out specific actions in well-known settings where changes are relatively easy to anticipate. Through the adaptation and adoption of currently available technologies, we estimate the technical feasibility of automating such activities at 78 percent, the highest of our seven top-level categories (Exhibit 2). Since predictable physical activities figure prominently in sectors such as manufacturing, food service and accommodations, and retailing, these are the most susceptible to automation based on technical considerations alone.
Exhibit 2

It’s more technically feasible to automate predictable physical activities than unpredictable ones. 


In manufacturing, for example, performing physical activities or operating machinery in a predictable environment represents one-third of the workers’ overall time. The activities range from packaging products to loading materials on production equipment to welding to maintaining equipment. Because of the prevalence of such predictable physical work, some 59 percent of all manufacturing activities could be automated, given technical considerations. The overall technical feasibility, however, masks considerable variance. Within manufacturing, 90 percent of what welders, cutters, solderers, and brazers do, for example, has the technical potential for automation, but for customer-service representatives that feasibility is below 30 percent. The potential varies among companies as well. Our work with manufacturers reveals a wide range of adoption levels—from companies with inconsistent or little use of automation all the way to quite sophisticated users.
Manufacturing, for all its technical potential, is only the second most readily automatable sector in the US economy. A service sector occupies the top spot: accommodations and food service, where almost half of all labor time involves predictable physical activities and the operation of machinery—including preparing, cooking, or serving food; cleaning food-preparation areas; preparing hot and cold beverages; and collecting dirty dishes. According to our analysis, 73 percent of the activities workers perform in food service and accommodations have the potential for automation, based on technical considerations.
Some of this potential is familiar. Automats, or automated cafeterias, for example, have long been in use. Now restaurants are testing new, more sophisticated concepts, like self-service ordering or even robotic servers. Solutions such as Momentum Machines’ hamburger-cooking robot, which can reportedly assemble and cook 360 burgers an hour, could automate a number of cooking and food-preparation activities. But while the technical potential for automating them might be high, the business case must take into account both the benefits and the costs of automation, as well as the labor-supply dynamics discussed earlier. For some of these activities, current wage rates are among the lowest in the United States, reflecting both the skills required and the size of the available labor supply. Since restaurant employees who cook earn an average of about $10 an hour, a business case based solely on reducing labor costs may be unconvincing.
Retailing is another sector with a high technical potential for automation. We estimate that 53 percent of its activities are automatable, though, as in manufacturing, much depends on the specific occupation within the sector. Retailers can take advantage of efficient, technology-driven stock management and logistics, for example. Packaging objects for shipping and stocking merchandise are among the most frequent physical activities in retailing, and they have a high technical potential for automation. So do maintaining records of sales, gathering customer or product information, and other data-collection activities. But retailing also requires cognitive and social skills. Advising customers which cuts of meat or what color shoes to buy requires judgment and emotional intelligence. We calculate that 47 percent of a retail salesperson’s activities have the technical potential to be automated—far less than the 86 percent possible for the sector’s bookkeepers, accountants, and auditing clerks.
As we noted above, however, just because an activity can be automated doesn’t mean that it will be—broader economic factors are at play. The jobs of bookkeepers, accountants, and auditing clerks, for example, require skills and training, so they are scarcer than basic cooks. But the activities they perform cost less to automate, requiring mostly software and a basic computer.
Considerations such as these have led to an observed tendency for higher rates of automation for activities common in some middle-skill jobs—for example, in data collection and data processing. As automation advances in capability, jobs involving higher skills will probably be automated at increasingly high rates.
The heat map in Exhibit 3 highlights the wide variation in how automation could play out, both in individual sectors and for different types of activities within them.4

Activities and sectors in the middle range for automation

Across all occupations in the US economy, one-third of the time spent in the workplace involves collecting and processing data. Both activities have a technical potential for automation exceeding 60 percent. Long ago, many companies automated activities such as administering procurement, processing payrolls, calculating material-resource needs, generating invoices, and using bar codes to track flows of materials. But as technology progresses, computers are helping to increase the scale and quality of these activities. For example, a number of companies now offer solutions that automate entering paper and PDF invoices into computer systems or even processing loan applications. And it’s not just entry-level workers or low-wage clerks who collect and process data; people whose annual incomes exceed $200,000 spend some 31 percent of their time doing those things, as well.
Financial services and insurance provide one example of this phenomenon. The world of finance relies on professional expertise: stock traders and investment bankers live off their wits. Yet about 50 percent of the overall time of the workforce in finance and insurance is devoted to collecting and processing data, where the technical potential for automation is high. Insurance sales agents gather customer or product information and underwriters verify the accuracy of records. Securities and financial sales agents prepare sales or other contracts. Bank tellers verify the accuracy of financial data.
As a result, the financial sector has the technical potential to automate activities taking up 43 percent of its workers’ time. Once again, the potential is far higher for some occupations than for others. For example, we estimate that mortgage brokers spend as much as 90 percent of their time processing applications. Putting in place more sophisticated verification processes for documents and credit applications could reduce that proportion to just more than 60 percent. This would free up mortgage advisers to focus more of their time on advising clients rather than routine processing. Both the customer and the mortgage institution get greater value.
Other activities in the middle range of the technical potential for automation involve large amounts of physical activity or the operation of machinery in unpredictable environments. These types of activities make up a high proportion of the work in sectors such as farming, forestry, and construction and can be found in many other sectors as well.
Examples include operating a crane on a construction site, providing medical care as a first responder, collecting trash in public areas, setting up classroom materials and equipment, and making beds in hotel rooms. The latter two activities are unpredictable largely because the environment keeps changing. Schoolchildren leave bags, books, and coats in a seemingly random manner. Likewise, in a hotel room, different guests throw pillows in different places, may or may not leave clothing on their beds, and clutter up the floor space in different ways.
These activities, requiring greater flexibility than those in a predictable environment, are for now more difficult to automate with currently demonstrated technologies: their automation potential is 25 percent. Should technology advance to handle unpredictable environments with the same ease as predictable ones, the potential for automation would jump to 67 percent. Already, some activities in less predictable settings in farming and construction (such as evaluating the quality of crops, measuring materials, or translating blueprints into work requirements) are more susceptible to automation.

Activities with low technical potential for automation

The hardest activities to automate with currently available technologies are those that involve managing and developing people (9 percent automation potential) or that apply expertise to decision making, planning, or creative work (18 percent). These activities, often characterized as knowledge work, can be as varied as coding software, creating menus, or writing promotional materials. For now, computers do an excellent job with very well-defined activities, such as optimizing trucking routes, but humans still need to determine the proper goals, interpret results, or provide commonsense checks for solutions. The importance of human interaction is evident in two sectors that, so far, have a relatively low technical potential for automation: healthcare and education.

Overall, healthcare has a technical potential for automation of about 36 percent, but the potential is lower for health professionals whose daily activities require expertise and direct contact with patients. For example, we estimate that less than 30 percent of a registered nurse’s activities could be automated, based on technical considerations alone. For dental hygienists, that proportion drops to 13 percent.
Nonetheless, some healthcare activities, including preparing food in hospitals and administering non-intravenous medications, could be automated if currently demonstrated technologies were adapted. Data collection, which also accounts for a significant amount of working time in the sector, could become more automated as well. Nursing assistants, for example, spend about two-thirds of their time collecting health information. Even some of the more complex activities that doctors perform, such as administering anesthesia during simple procedures or reading radiological scans, have the technical potential for automation.
Of all the sectors we have examined, the technical feasibility of automation is lowest in education, at least for now. To be sure, digital technology is transforming the field, as can be seen from the myriad classes and learning vehicles available online. Yet the essence of teaching is deep expertise and complex interactions with other people. Together, those two categories—the least automatable of the seven identified in the first exhibit—account for about one-half of the activities in the education sector.
Even so, 27 percent of the activities in education—primarily those that happen outside the classroom or on the sidelines—have the potential to be automated with demonstrated technologies. Janitors and cleaners, for example, clean and monitor building premises. Cooks prepare and serve school food. Administrative assistants maintain inventory records and personnel information. The automation of these data-collection and processing activities may help to reduce the growth of the administrative expenses of education and to lower its cost without affecting its quality.

Looking ahead

As technology develops, robotics and machine learning will make greater inroads into activities that today have only a low technical potential for automation. New techniques, for example, are enabling safer and more enhanced physical collaboration between robots and humans in what are now considered unpredictable environments. These developments could enable the automation of more activities in sectors such as construction. Artificial intelligence can be used to design components in engineer-heavy sectors.
One of the biggest technological breakthroughs would come if machines were to develop an understanding of natural language on par with median human performance—that is, if computers gained the ability to recognize the concepts in everyday communication between people. In retailing, such natural-language advances would increase the technical potential for automation from 53 percent of all labor time to 60 percent. In finance and insurance, the leap would be even greater, to 66 percent, from 43 percent. In healthcare, too, while we don’t believe currently demonstrated technologies could accomplish all of the activities needed to diagnose and treat patients, technology will become more capable over time. Robots may not be cleaning your teeth or teaching your children quite yet, but that doesn’t mean they won’t in the future.
As stated at the outset, though, simply considering the technical potential for automation is not enough to assess how much of it will occur in particular activities. The actual level will reflect the interplay of the technical potential, the benefits and costs (or the business case), the supply-and-demand dynamics of labor, and various regulatory and social factors related to acceptability.

Leading more automated enterprises

Automation could transform the workplace for everyone, including senior management. The rapid evolution of technology can make harnessing its potential and avoiding its pitfalls especially complex. In some industries, such as retailing, automation is already changing the nature of competition. E-commerce players, for example, compete with traditional retailers by using both physical automation (such as robots in warehouses) and the automation of knowledge work (including algorithms that alert shoppers to items they may want to buy). In mining, autonomous haulage systems that transport ore inside mines more safely and efficiently than human operators do could also deliver a step change in productivity.
Top executives will first and foremost need to identify where automation could transform their own organizations and then put a plan in place to migrate to new business processes enabled by automation. A heat map of potential automation activities within companies can help to guide, identify, and prioritize the potential processes and activities that could be transformed. As we have noted, the key question will be where and how to unlock value, given the cost of replacing human labor with machines. The majority of the benefits may come not from reducing labor costs but from raising productivity through fewer errors, higher output, and improved quality, safety, and speed.
It is never too early to prepare for the future. To get ready for automation’s advances tomorrow, executives must challenge themselves to understand the data and automation technologies on the horizon today. But more than data and technological savvy are required to capture value from automation. The greater challenges are the workforce and organizational changes that leaders will have to put in place as automation upends entire business processes, as well as the culture of organizations, which must learn to view automation as a reliable productivity lever. Senior leaders, for their part, will need to “let go” in ways that run counter to a century of organizational development.5

Understanding the activities that are most susceptible to automation from a technical perspective could provide a unique opportunity to rethink how workers engage with their jobs and how digital labor platforms can better connect individuals, teams, and projects.6It could also inspire top managers to think about how many of their own activities could be better and more efficiently executed by machines, freeing up executive time to focus on the core competencies that no robot or algorithm can replace—as yet.
Could a machine do your job? Find out on Tableau Public, where we analyzed more than 800 occupations to assess the extent to which they could be automated using existing technology
https://mck.co/3evKBDF

воскресенье, 1 ноября 2020 г.

Топ-100 богатейших украинцев от Forbes и по версии журнала «НВ»

 


Топ-100 богатейших украинцев от Forbes

Журнал Forbes опубликовал Топ-100 богатейших бизнесменов Украины впервые с 2016 года. Совокупное состояние участников рейтинга составило $31,4 млрд. Рейтинг опубликован в первом номере печатного Forbes (есть в распоряжении AIN.UA).

В рейтинге — несколько свежих лиц из IT-индустрии, состояния которых — сотни миллионов долларов.

Обновлено: после публикации материала компания Grammarly сообщила AIN.UA, что заявленная редакцией оценка — некорректная. Детальнее об этом — ниже.

Кто самый богатый в ІТ

  • Тринадцатую позицию рейтинга занял Дмитрий Запорожец — основатель сервиса GitLab. Его состояние оценили в $560 млн. В 2019 году GitLab привлек $268 млн в рамках раунда серии E. Компанию оценили в $2,7 млрд. Суммарно компания привлекла $426 млн.
  • 27 позиция досталась Владу Яценко, сооснователю сервиса Revolut — финансового сервиса для путешественников, который работает как онлайн-банк. По мнению Forbes, он владеет $300 млн. В феврале 2020 года Revolut привлек $500 млн в новом раунде финансирования и получил оценку в $6 млрд. 
  • 33-м в рейтинге поместили Олега Рогинского с $270 млн. Он является основателем американского sales-стартапа People.ai. Суммарно на 2019 год он привлек около $100 млн инвестиций и получил оценку в $500 млн.
  • 35, 36 и 37 места заняли Алексей Шевченко, Максим Литвин и Дмитрий Лидер — основатели сервиса проверки правописания Grammarly. Их состояние Forbes оценил в $250 млн. В 2019 году компания Grammarly привлекла $90 млн с оценкой более $1 млрд и стала единорогом.
  • В рейтинг попали основатели IT-компании SoftServe Тарас Кицмей (68 место, $120 млн) и Ярослав Любинец (98 место, $95 млн).

Кейс Grammarly

Forbes считал оценку состояния основателей Grammarly исходя из оценки компании в $1 млрд и того, что у каждого из основателей по 25% бизнеса.

На самом деле, Grammarly никогда не указывал, что их оценка — $1 млрд. Во всех материалах компания указывала оценку «более $1 млрд». Авторитетный сервис PitchBook не так давно указал реальную оценку бизнеса Grammarly — $2,3 млрд. Редакция AIN.UA связалась с Grammarly: оценку PitchBook в компании не подтвердили, но и не опровергли. Кроме того, на оценку в $2,3 млрд указывает и американский Forbes: никаких опровержений после выхода материала не появилось.

Помимо того, согласно данным AIN.UA, у троих основателей осталось 76%, а не 75%. Таким образом, у каждого из основателей Grammarly — порядка $582,6 млн. С таким состоянием они могли бы занять 13-14-15 места в списке богатейших украинцев.

Дополнено: после выхода материала редакция AIN.UA получила уточнение от Grammarly, что представленная в PitchBook оценка, как и доли — неверная. Приводим комментарий компании в полном объеме:

Grammarly, як приватна компанія, володіє правом не розголошувати дані щодо вартості компанії, складу її власників та розподілу долей. 

Стосовно оцінки сервісом PitchBook, на яку посилається видання. Ми публічно не розкриваємо оцінку нашої компанії, проте можемо стверджувати, що дані на згаданому ресурсі є некоректними. 

Також, хочемо зазначити, що склад власників нашої компанії відрізняється від складу засновників. Ми наголошуємо, що розрахунки, котрі були здійснені редакцією для оцінки статків наших засновників також не відповідають дійсності.  

Редакция AIN.UA доверяет PitchBook как одному из наиболее популярных и авторитетных сервисов в мире по предоставлению финансовой информации, в том числе непубличных компаний. Сервису доверяет и американский Forbes, который также использовал оценку PitchBook в своем последнем о компании материале. Материал, вышедший 22 апреля, указан с оценкой в $2,3 млрд и никаких опровержений оценки в нем нет.

Топ-10 богатейших

  1. Ринат Ахметов — $2,8 млрд;
  2. Виктор Пинчук — $1,4 млрд;
  3. Петр Порошенко — $1,4 млрд;
  4. Александр и Галина Гереги — $1,3 млрд;
  5. Геннадий Боголюбов — $1,2 млрд;
  6. Юрий Косюк — $1,1 млрд;
  7. Константин Жеваго — $1,1 млрд;
  8. Игорь Коломойский — $1 млрд;
  9. Вадим Новинский — $810 млн;
  10. Александр Ярославский — $725 млн.

Кто еще в рейтинге

  • 21 место с состоянием $390 млн занял Степан Черновецкий — глава компании Chernovetskyi Investment Group. В апреле 2020 года фонд выступил ведущим инвестором в сервис доставки продуктов из супермаркетов Zakaz.ua.
  • 22 место — Владислав и Ирина Чечеткины — $380 млн. Основной актив: Rozetka;
  • 34 место — Василий Хмельницкий — $255 млн. Основной актив: UFuture Investment Group;
  • 62 место — Виктор Полищук — $130 млн. Основной актив: Eldorado;
  • 95 место — Владимир Поперешнюк, Вячеслав Климов — $100 млн у каждого. Основной актив: «Нова Пошта».

Напомним, перезапуск печатной и онлайн-версий Forbes в Украине состоялся этой весной. Главным редактором стал Владимир Федорин. Журнал будет выходить 10 раз в год на русском и украинском языках. 

Топ-100 богатейших украинцев по версии журнала «НВ»

Журнал «НВ» опубликовал топ-100 богатейших бизнесменов Украины в 2020 году. Совокупное состояние участников рейтинга составило $34,4 млрд.

Кто самый богатый в ІТ

  • Двадцатую позицию рейтинга занял Дмитрий Запорожец — основатель сервиса GitLab. Его состояние в «НВ» оценили в $354 млн. В 2019 году GitLab привлек $268 млн в рамках раунда серии E. Компанию оценили в $2,7 млрд. Суммарно компания привлекла $426 млн. 
  • 21 позиция досталась Владу Яценко, сооснователю сервиса Revolut — финансового сервиса для путешественников, который работает как онлайн-банк. Он владеет $328 млн. В феврале 2020 года Revolut привлек $500 млн в новом раунде финансирования и получил оценку в $6 млрд.  
  • 36, 37 и 38 места заняли Алексей Шевченко, Дмитрий Лидер и Максим Литвин — основатели сервиса проверки правописания Grammarly. Их состояние «НВ» оценил в $208 млн. В 2019 году компания Grammarly привлекла $90 млн с оценкой более $1 млрд и стала единорогом. Напомним, ранее издание Forbes также представило рейтинг сотни богатейших украинцев в котором основателям Grammarly приписали по $270 млн. Однако согласно данным AIN.UA, состояние каждого из них — порядка $582,6 млн. Подробнее — в материале.
  • На 41 и 51 месте рейтинга основатели IT-компании SoftServe Тарас Кицмей ($188 млн) Ярослав Любинец ($153 млн). Тарас Вервега оказался на 59 месте с $128 млн. Также в рейтинг попали Юрий Василик и Олег Денис — у каждого из них по $100 млн.
  • 58-м в рейтинге поместили Олега Рогинского с $131 млн. Он основатель американского стартапа People.ai. Суммарно на 2019 год он привлек около $100 млн инвестиций и получил оценку в $500 млн.

Кто еще в рейтинге

  • Четырнадцатую позицию рейтинга занял Владислав Чечеткин, основным активом которого является маркетплейс Rozetka. Его состояние оценили в $445 млн
  • 30 место с состоянием $265 млн занял Степан Черновецкий — глава компании Chernovetskyi Investment Group. В апреле 2020 года фонд выступил ведущим инвестором в сервис доставки продуктов из супермаркетов Zakaz.ua. 
  • 33 место — Василий Хмельницкий — $249 млн. Основной актив: UFuture Investment Group.
  • Владимир Поперешнюк, Вячеслав Климов — $226 млн у каждого. Основной актив: «Нова Пошта».
  • 75 место — Виктор Полищук — $102 млн. Основной актив: Eldorado.
  • 76 позиция у Станислава Рониса — $101 млн. Основной актив: Comfy.

Топ-5 богатейших

На первой позиции оказался Ренат Ахметов, состояние которого оценили в 6,6 млрд. В сумме, первая пятерка рейтинга владеет 13 млрд, кроме Ахметова в список лидеров попали Виктор Пинчук, Петр Порошенко, Дмитрий Фирташ и Вадим Новинский.


Фото "НВ"

Ранее рейтинг богатейших украинцев представил журнал Forbes Украина. Примечательно, что состояние некоторых предпринимателей по версии «НВ» значительно отличается.

Топ-10 самых дорогих стартапов мира, потерпевших неудачу

 


Издание Cbinsight представило подборку самых дорогих стартапов мира, потерпевших неудачу. AIN.UA выбрал 10 компаний, которые не смогли добиться успеха при миллионных инвестициях. Среди основных причин — неспособность получать стабильный доход, плохое соответствие продукта рынку, проигрыш конкурентам и нехватка средств.

Solyndra — $1,6 млрд инвестиций

Компания предлагала солнечные панели по инновационной технологии еще с 2000-х годов. Разработка позволяла максимально рационально использовать поверхность солнечных панелей. Solyndra удалось привлечь в сумме почти $1,6 млрд инвестиций, включая $535 млн от правительства США. Компания объявила о банкротстве 1 сентября 2011 года, оставив без работы более 1000 человек. Среди причин: обвал мировых цен на компоненты солнечных панелей. Solyndra не выдержала конкуренции, поскольку другим компаниям удалось снизить стоимость на свои разработки.

LeSports — $1,4 млрд инвестиций

Стартап LeSports родом из Гонконга должен был стать крупнейшим владельцем прав на трансляции спортивных мероприятий в Китае. Спустя меньше чем 4 года, компания объявила о банкротстве — основатель Цзя Ютинг задолжал кредиторам около $3,6 млн.

Arrivo — $1 млрд инвестиций

Основатели стартапа предлагали свою версию гиперлупа – высокоскоростного транспорта. Спустя год в конце 2018 года компания была вынуждена закрыться из-за нехватки финансирования.

Jawbone — $929,9 млн инвестиций

Американский стартап Jawbone производил фитнес-трекеры, bluetooth-гарнитуры и колонки. Получив к 2014 году оценку в $3,2 млрд, продукция занимала менее 3% рынка. Jawbone начала ликвидацию активов в июле 2017 года, просуществовав 17 лет.

Better Place — $675,3 млн инвестиций

Об израильской компании Better Place заговорили в 2007 году. Стартап хотел производить электромобили. Получив $675,3 млн инвестиций и выпустив менее 1000 электрокаров, руководство заявило о банкротстве в 2013 году. Компания не смогла справится с проблемами, связанными с логистикой, что помешало ей масштабироваться.

Abound Solar — $614 млн инвестиций

Abound Solar была ведущей американской компаний по производству солнечных батарей. Долги компании превысили $100 млн, а успешно продукцию реализовать не удавалось. Как сообщалось, Abound Solar не смогла конкурировать с китайскими производителями. В 2012 году компания обанкротилась.

Theranos — $500 млн инвестиций

Компания Theranos представила в 2003 году эволюционную технологию для анализа крови, с помощью которой можно выявить множество заболеваний. Спустя 15 лет она прекратила свою деятельность — Комиссия по ценным бумагам и биржам (SEC) обвинила основательницу и бывшего президента Theranos в «массовом мошенничестве». «Инновационная разработка» так и не была создана, а компанию объявили банкротом.

Essential Products — $330 млн инвестиций 

Стартап Essential от создателя операционной системы Android Энди Рубина закрылся менее, чем через 3 года. За время своего существования компания выпустила только смартфон Essential Phone, который получил неоднозначные отзывы и плохо продавался. Следующее устройство, а также ряд других технологий были анонсированы, однако до релиза не дошло.

Pets.com — $110 млн инвестиций 

Pets.com — онлайн-зоомагазин запустился в ноябре 1998 года и закрылся спустя 2 года. Для привлечения клиентов компания во многом полагалась на скидки. В результате фирма все время продавала товары по цене ниже себестоимости. Руководители вернули деньги инвесторам и продали домен зоомагазина.

ScaleFactor — $104 млн инвестиций

Американский стартап ScaleFactor создавал инструменты на базе искусственного интеллекта, которые заменяли бухгалтера на предприятии. Спустя 6 лет на рынке, компания объявила о закрытии. ScaleFactor использовала агрессивную тактику продаж и уделяла приоритетное внимание погоне за капиталом. Как результат, на задний план отошло создание программного обеспечения, которое в конечном итоге не соответствовало анонсированным технологиям — продукт не был эффективным. Кроме этого, руководство стартапа попыталось скрыть масштабы реального ущерба.

Tesla is the World’s Most Valuable Automaker!